

you will see these tests everyday, so you need to be able to interpret them!

-some of this material will be covered in the cpc due to short time during the lecture

Abnormalities of Blood Count : Pathophysiology and Laboratory Diagnosis of Anemias and other Blood Disorders

Anand Shreeram Lagoo, MD, PhD Associate Professor of Pathology Director, Clinical Flow Cytometry Laboratory

Phone: 668-0921, Pager 970-2903

Learning Objectives

- Recognize common quantitative abnormalities in complete blood count (CBC) and qualitative abnormalities on a peripheral blood smear (PBS)
- Interpret hematologic laboratory values to diagnose various types of anemias

numeric values

- Define the terms used to identify hematologic abnormalities
- Understand the morphological and etiologic classification of anemias and the pathophysiological basis of anemias
- parallel but not mutually exclusive
- Perform a differential diagnosis in a case of anemia and select additional laboratory tests to define cause of anemia
- Recognize the common white cell and platelet abnormalities

Lecture Outline

- Basic mechanisms of hematological abnormalities
- Automated blood count (ABC) Method and parts of a typical ABC
- Red blood cells
 - Classification of anemias (Note: Hereditary causes of anemia will be covered in CPC on May 23)
 - Case 1 Iron deficiency anemia. Pathophysiology of iron metabolism. Additional tests.
 - Case 2 Pernicious anemia. Pathophysiology of megaloblastic anemias. Metabolism of folate, B12.
 - Case 3 Anemia of chronic inflammation. Hepcidin and related molecules controlling iron.
 - □ Case 4 Autoimmune hemolytic anemia. Causes and mechanisms.

White blood cells

- □ Case 5 CML. Philadelphia chromosome.
- □ Case 6 Polycythemia vera. Jak2 mutations and myeloproliferative neoplasms.
- Case 7 Aplastic anemia.
- Platelets
 - □ Case 8 ITP. Causes of thrombocytopenia.

Peripheral Blood Cells : Basic Facts

	Number / cmm	Life Span in Days	Produced in	Destroyed in
Red Cells*	5 x 10 ⁶	120	BM	Spleen
Platelets	5 x 10 ⁵	5-7	BM	Spleen
White Cells	5 x 10 ³	<1 (PMN)	BM, lymph nodes	Tissues

•*Reticulocytes: Without a nucleus, but contain RNA. Need 2 days in BM & 1 day in PB to mature to RBC. Normally 1% of RBC.

General Approach to Diagnosis of Hematological Abnormalities

- Is there an abnormality in the blood count?
- Which cell line(s) affected?

red cells, white cells, platelets

- Morphology of affected cells Normal?
 - □ Abnormal?

MCV, MCH

NOTE: Calculated "indices" provide similar information[∠]

What is the likely cause of the abnormality?

Additional tests

rational treatment needs to be directed towards cause

Initial Division of

- Hematological Abnormalities
- Quantitative: one or more cell types may be involved
 - Reduced numbers of blood cells (=cytopenia)

ex- leukocytosis with

blood cell and too many of another-

based on

morphology of cells

- □ Too many blood cells (=cytosis)_<
- □ Complex: one cell type ↓, other ↑
- Qualitative
 - Presence of immature cells
 - Functionally abnormal cells
 - □ Presence of cells not belonging to blood

Mixed

cells that do not belong in normal blood: blasts - immature cells tumor (leukemia) cells -may be mixed

-platelets-

TOO MANY CELLS:

-white cells-

leukocytosis

thrombocytosis

-platelets-

-red cells-

thrombocytopenia -red cells- anemia

Quantitative Blood Cell Abnormalities -Basic mechanisms particularly in red Causes of Cytopenias: cells- Hb about 97% of red cell **Decreased production** mass so problem with Hb has great Lacks building blocks (nutritional, other) effect on red cell size and number Problems with production site (marrow pathology) problem with bone Excessive destruction marrow enlarged spleen Intrinsic vs extrinsic abnormalities sequesters a lot of blood and lowers Abnormal compartmentalization circulating red cell count Causes of increased cell number: Excessive production (reactive vs neoplastic) production increases Increased life-span (neoplastic) CLL- cells live verv -reaction to insultlong and don't die infection causes leukocyte count to Delayed exit from blood (steroids) white cell count increase may go up -malignancy - CML because causes increase in neutrophils are not platelets and white exiting the blood cells

Basic Laboratory Tests in Hematology

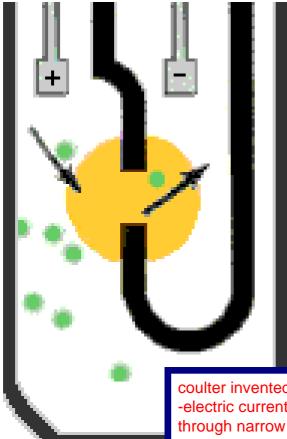
blood tests you will see for many patients -automated blood count = cbc -peripheral blood smear

Automated blood count, with or without automated differential count

-CBC

Peripheral blood smear

Automated Blood Analyzer

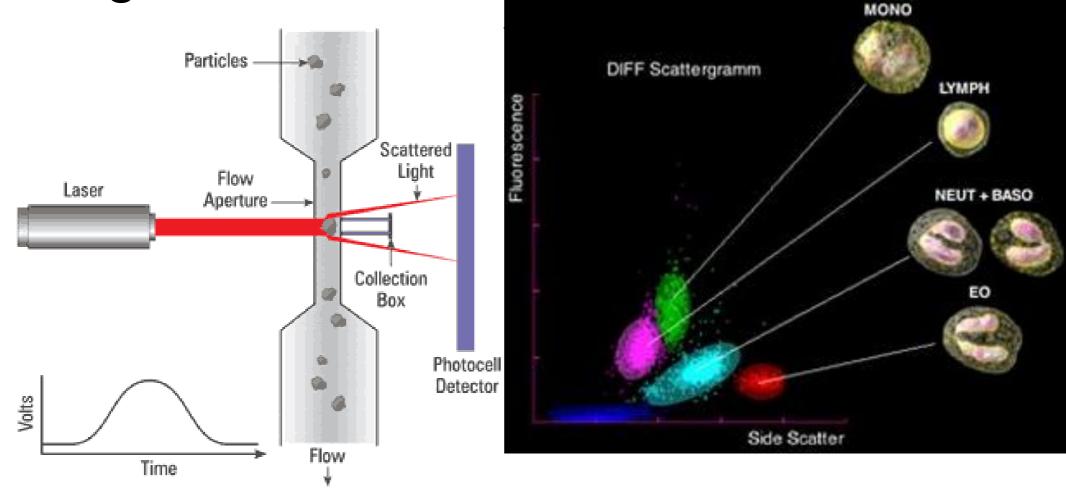

instrument for cbc a couple hundred tests per hour

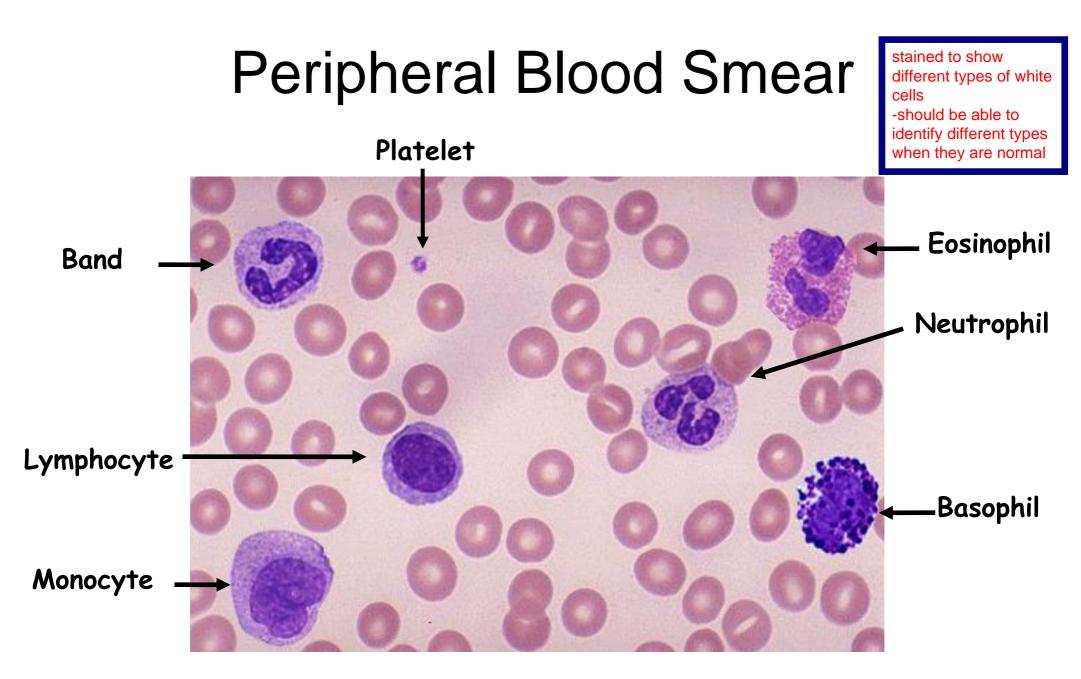
Can analyze 110 – 150 samples / hour

XE-2100

Automated Blood Analyzer: The Coulter Principle

When particles are pulled through an orifice, through which an electric current is flowing, there is a change in impedance that is proportional to the size of the particle.


The Coulter principle was named for its inventor, Wallace H. Coulter


coulter invented the machine -electric current passing through conducting fluid through narrow pore, there will be a certain resistance -the resistance increases proportionally to cell size -tells you how many cells passing through and size of different cells

Automated Blood Analyzer: Light Scatter

light scatter is also used to analyze blood -laser points at single cells and angle of scatter tells you type of blood cell

Automated Blood Count Boxed the values that he refers to later in the lecture

duke version of cbc

AUTO BLOOD CT WITH AUTO DIFF

Reference

			Reference
HEMOGLOBIN	15.5	g/dL	[13.7-17.3]
HEMATOCRIT	0.46	L/L	[0.39-0.49]
RED BLOOD CELL COUNT	4.95	X10^12	[4.37-5.74]
MCH	31.3	pg	[26.5-34.0]
MCHC	33.4	÷	[31.5-36.3]
RDW-CV	13.4	8	[11.5-14.5]
MCV	94	fL	[80-98]
NUCLEATED RBC %	0.0	/100WC	
NUCLEATED RBC COUNT	0.00	X10^9	[0.00-0.00]
PLATELET COUNT /L	171	X10^9	[150-450]
WHITE BLOOD CELL COUNT	4.5	X10^9	[3.2-9.8]
NEUTROPHIL %	60.2	8	[37.0-80.0]
LYMPHOCYTE %	26.8	옹	[10.0-50.0]
MONOCYTE %	10.1	옹	[0.0-12.0]
EOSINOPHIL %	2.7	8	[0.0-7.0]
BASOPHIL%	0.2	8	[0.0-2.0]
NEUTROPHIL COUNT	2.7	X10^9	[2.0-8.6]
LYMPHOCYTE COUNT	1.2	X10^9	[0.6-4.2]
MONOCYTE COUNT	0.5	X10^9	[0.0-0.9]
EOSINOPHIL COUNT	0.12	X10^9	[0.00-0.70]
BASOPHIL COUNT	0.01	X10^9	[0.00-0.20]

Automated Blood Count

AUTO BLOOD CT WITH AUTO DIFF

cell values blue box- white blood cell values

red box- red

15.5	g/dL	[13.7-17.3]
0.46	L/L	[0.39-0.49]
4.95	X10^12	[4.37-5.74]
31.3	pg	[26.5-34.0]
33.4	응	[31.5-36.3]
13.4	옿	[11.5-14.5]
94	fL	[80-98]
0.0	/100WC	
0.00	X10^9	[0.00-0.00]
171	X10^9	[150-450]
4.5	X10^9	[3.2-9.8]
60.2	8	[37.0-80.0]
26.8	8	[10.0-50.0]
10.1	8	[0.0-12.0]
2.7	8	[0.0-7.0]
0.2	%	[0.0-2.0]
2.7	X10^9	[2.0-8.6]
1.2	X10^9	[0.6-4.2]
0.5	X10^9	[0.0-0.9]
0.12	X10^9	[0.00-0.70]
0.01	X10^9	[0.00-0.20]
	0.46 4.95 31.3 33.4 13.4 94 0.0 0.00 171 4.5 60.2 26.8 10.1 2.7 0.2 2.7 1.2 0.5 0.12	0.46 L/L 4.95 X10^12 31.3 pg 33.4 % 13.4 % 94 fL 0.0 /100WC 0.00 X10^9 171 X10^9 4.5 X10^9 60.2 % 26.8 % 10.1 % 2.7 % 0.2 % 2.7 % 0.2 % 2.7 X10^9 1.2 X10^9 0.5 X10^9

Automated Blood Count

AUTO BLOOD CT WITH AUTO DIFF

HEMOGLOBIN HEMATOCRIT RED BLOOD CELL COUNT MCH MCHC RDW-CV MCV	*9.7 *0.26 *2.95 32.9 *37.3 *15.3 88	g/dL L/L X10^12 pg % % fL	Reference [13.7-17.3] [0.39-0.49] [4.37-5.74] [26.5-34.0] [31.5-36.3] [11.5-14.5] [80-98]	Alert value is seriously abnormal and maybe life threatening. Lab must call a nurse or doctor with the result. In this case platelets are dangerously low.
NUCLEATED RBC %	0.0	/100WC		Dr. H
NUCLEATED RBC COUNT	0.00	X10^9	[0.00-0.00]	
PLATELET COUNT /L	*9	X10^9	[150-450]	
This ALERT result has	been called t	O BEAVEN by C	YNTHIA KING on	05-07-10 ac
13:39 and has been re	ad back.			
WHITE BLOOD CELL COUNT	*19.0	X10^9	[3.2-9.8]	
NEUTROPHIL %	*	÷	[37.0-80.0]	
LYMPHOCYTE %	* *	8	[10.0-50.0]	
MONOCYTE %	* *	8	[0.0-12.0]	
EOSINOPHIL %	* *	÷	[0.0-7.0]	
BASOPHIL%	* *	÷	[0.0-2.0]	
NEUTROPHIL COUNT	* *	X10^9	[2.0-8.6]	
LYMPHOCYTE COUNT	* *	X10^9	[0.6-4.2]	
MONOCYTE COUNT	* *	X10^9	[0.0-0.9]	
EOSINOPHIL COUNT	* *	X10^9	[0.00-0.70]	
BASOPHIL COUNT	* *	X10^9	[0.00-0.20]	
BLOOD FILM REVIEWED				

when values are abnormal, they are marked in RED by the laboratory.

 -Hb low- anemia -Hb high - polycythemia -MCV low - microcytic anemia -MCV high - macrocytic anemia -MCH low - hypochromic anemia -MCH high - hyperchromic anemia -reticulocytes low - decreased production in bone marrow -reticulocytes high- increased production marrow -reticulocytes high- increased production -Rentral pallo 	uction or early release	e from	Platelet
hemoglobin levels are different between the sexes!	Normal Range	Decreased below lower limit =	Increased above upper limit =
Hgb g/dL M F	14 - 18 12 - 16	Anemia	Polycythemia
MCV in fL	80 - 98	Microcytic	Macrocytic
MCH in pg	27 - 34	Hypochromic	Hyperchromic
Reticulocyte: % Abs /c mm	0.5 – 1.5 20k –100k	Decreased production or desctruction in BM	Increased production or early release from BM

anemia is a huge problem worldwide and in the US

A Major Health Problem Worldwide

Worldwide:


Anemia :

- Anemia affects 42% children <5 years old and 53% children 5–14 years old
- Anemia is 3rd leading cause of lost productivity in adult females
- Over 1 billion people have iron deficiency (Am J Trop Med Hyg. 2007 Jul;77(1):44-51)

In the US

- 3.5% of all persons enrolled in one health insurance plan in 2000 were found to be anemic
- Average annual cost for anemic patients was \$14,535 compared to \$9,451 in non-anemic patients J Manag Care Pharm. 2005 Sep;11(7):565-74.

BIZARRO

Classifications of Anemias

definition of anemia = Hb low for the age of sex and patient -severity based on how low Hb is

Morphological classification- Based on size of RBC and

their hemoglobin content

Normocytic vs Microcytic vs Macrocytic

□ Normochromic vs Hypochromic

NOTE: The morphological classification suggests an etiologic differential which is confirmed by additional tests

Etiological Classification

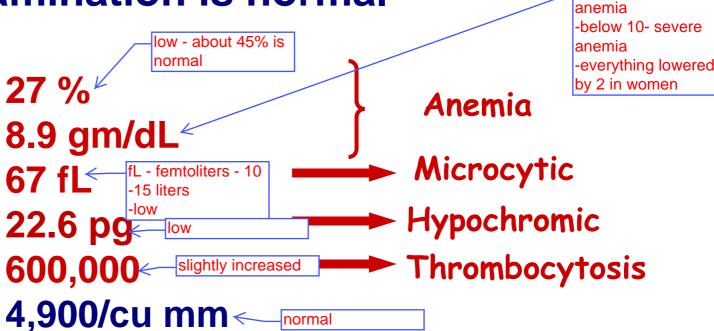
- Decreased Hgb and/or RBC production
 - Deficiency of essential ingredients- Iron, Folate, B12, etc
 - Thalassemias
 - Decreased or defective progenitor cells
- Defects of red cell survival
 - Hemoglobinopathies
 - Red cell membrane abnormalities
 - Red cell enzyme abnormalites
 - Immune destruction of RBC
 - Vascular and other extrinsic causes
 - Infections Malaria

based on cbc

-MCV- size - microcytic vs macrocytic -MCH - chromic - hypochrombic vs hyperchromic

Case 1

59 yo caucasian man


The normal values you need to know for this case -Hct - 0.39- 0.49 -Hb for a man - 14-18 -MCV- 80-98 -MCH- 27-34 -platelets - 150, 0000 - 450,000 -wbc count - 3200 - 9800

> severe anemia should be 14 or above for a man

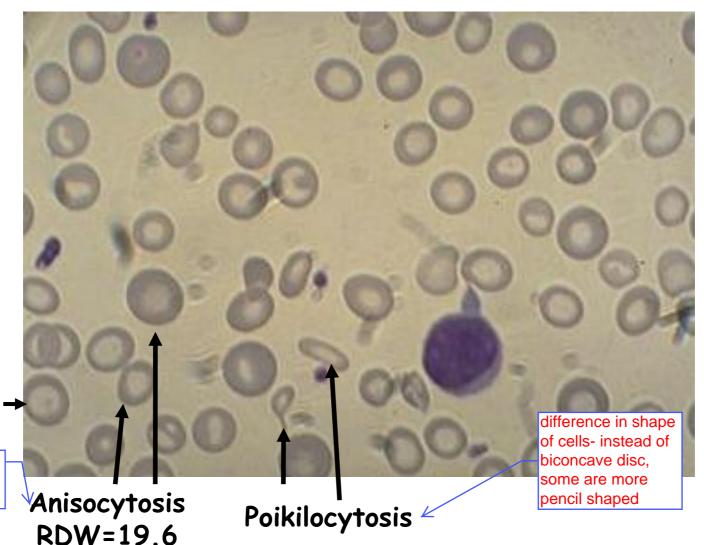
-10-12 - moderate

-12-14 - mild anemia

- Presents with fatigue and headache for 4 months
- He has noted some upper abdominal distress
- Physical examination is normal
- Lab data:
 - □ Hct:
 - □ Hgb:
 - □ MCV:
 - □ MCH:
 - Platelets:
 WBC

Case 1: Microcytic, hypochromic anemia (continued)

- 59 yo caucasian man with Microcytic anemia and thrombocytosis
 - □ Hct: 27 %
 - □ Hgb: 8.9 gm/dL
 - $\Box MCV: \qquad 67 \text{ fL}$
 - □ MCH: 22.6 pG
 - □ Platelets: 600,000
 □ WBC 4,900/cu mm
- Reticulocyte: 30,000/mm3
- Peripheral Blood Film-
 - WBC differential:
 - Neutrophils 65%
 - Iymphocytes 33%
 - monocytes 2%


Abnormal RBC morphology

normal differential white blood cell counts

abnormal red cell morphology The normal values you need to know for this case -reticulocyte count -20-100 k/cumm

Inappropriately low

Case 1 - Peripheral Blood Film Microcytic hypochromic anemia

central pallor in center of red cells is increased

large variation in diameter of red cells

Microcytic hypochromic anemia: Etiological differential diagnosis

Iron deficiency anemia

- Anemia of chronic inflammation
- Thalassemias
 inherited cause, will see on
 monday

- Sideroblastic anemia
- Lead poisoning

Understanding iron metabolism:

- The body has no mechanism to excrete excess iron
- Absorption of dietary iron is strictly controlled to maintain total iron in the body
- Free iron is toxic, therefore it is bound to proteins –

Specific binding to transferrin and apoferritin
 Non-specific binding to albumin

-body does not have a good mechanism for excreting iron so the intake of iron must be tightly regulated -free iron is toxic so it must be bound to proteins- transferrin is primary transport protein

Understanding iron metabolism:

- Transferrin is the primary transport molecule for iron.
 - Blood transferrin level is referred to as "Total Iron Binding Capacity"
 - Proportion of transferrin molecules bound to iron = % saturation of iron binding capacity
 - This iron is most readily available for Hgb synthesis
- Some iron binds to another protein called apoferritin to form a water soluble molecule called ferritin
 blood and tissues
 - Ferritin is present in blood and ferritin iron can be easily delivered for Hgb synthesis.

Amman/Queen Alia International Airpor

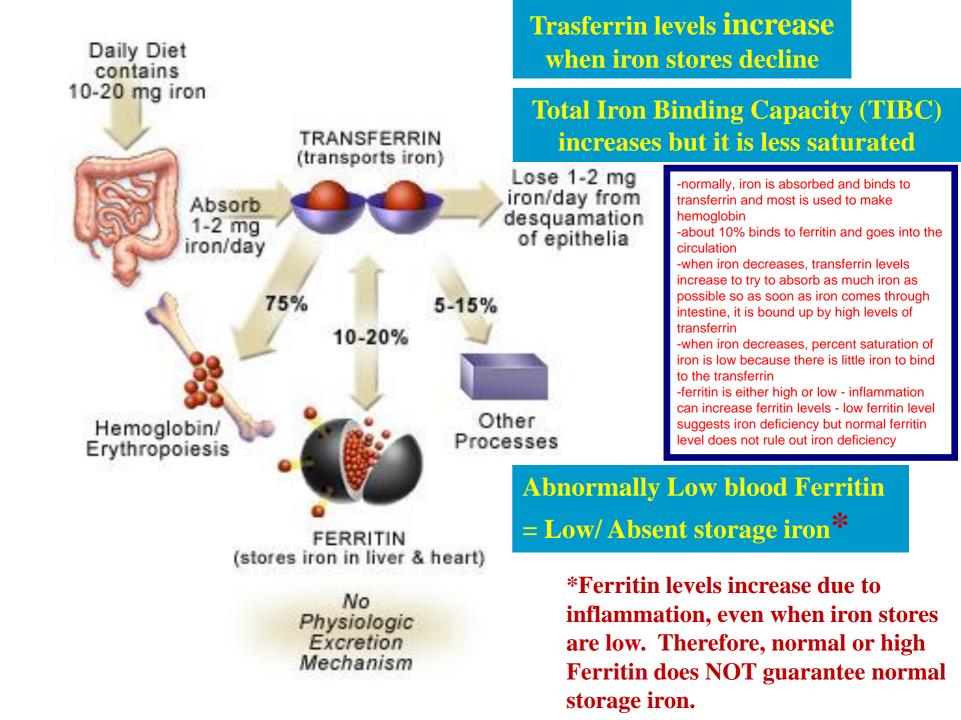
HTFS/JN-LN/HTFS/CODE654098/JN/2007

IRAO

A-971240

Excess iron is stored in bone marrow as water insoluble Hemosiderin

-transferrin bound iron is cash in your pocket that is the most readily available


-ferritin is like your atm card where you can go get cash if you need it -hemosiderin is like your certificate of deposit that may be harder to access but may contain a lot of money

Additional Laboratory Tests In Microcytic, Hypochromic Anemia:

Serum Iron level:

any time you suspect problem with iron metabolism, do these 4 tests

- Iron binding capacity = Transferrin level
- Transferrin saturation = % transferrin bound to iron
- Serum ferritin

Case 1 continued

Additional laboratory tests:

- Serum Iron: 10 (low)
- Iron binding capacity: 450 (high)
- Transferrin saturation: 2% (low)
- Serum ferritin: 10 ng/mL (low)

Diagnosis: Iron deficiency anemia
Must investigate causes of chronic blood loss in iron deficiency anemia in older adults. Dietary iron deficiency more common in children and reproductive age females.

Stool samples positive for occult blood

do not miss the CAUSE of iron deficiency in this case it was a GI malignancy dietary causes are more common in younger patients whereas malignancies increase in likelihood in older patients

need to do colonoscopy

what is the cause of iron deficiency? -adult male or post menopausal females --> GI tract malignancy?

Case 2

54 yo man

- The normal values you need to know for this case -Hct - 0.39- 0.49 -Hb for a man - 14-18 -MCV- 80-98 -MCH- 27-34 -reticulocytes - 20-100 K/ cumm -platelets - 150, 0000 - 450,000 -wbc count - 3200 - 9800
- Presents with nausea, poor appetite, mild diarrhea
- PE: Normal

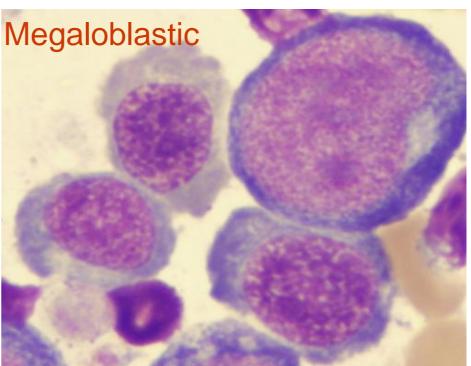
■ CBC:

- □ Hct:
- □ Hgb:
- □ MCV:

- 12 gm/dl (Anemia) <moderate anemia (Macrocytosis) large red cells
- 115 fl 65,000/ cu mm (not elevated, relatively low) □ Retic:

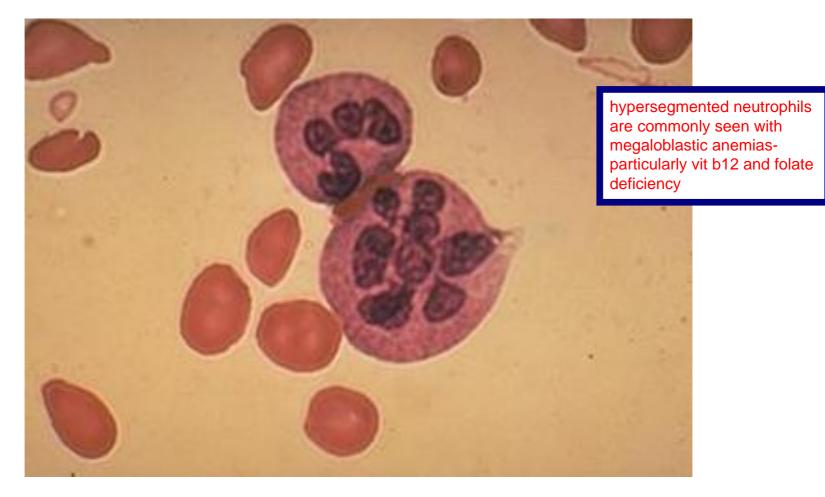
low hematocrit

- 200,000 □ Platelets:
- □ WBC: 4,000
- Blood film: normal
- Macrocytosis, WBC differential is
- Normal upper and lower GI studies


35 %

Macrocytic Anemias with low Retics: Megaloblastic or Normoblastic?

- Megaloblastic (specific morphological change in red cell precursors in bone marrow)
 - □ Vit B12 deficiency
 - □ Folate deficiency
 - Myelodysplastic syndromes
 - Drug-induced


Normoblastic

- Hypothyroidism
- □ Liver disease
- Alcohol

macrocytic anemias can be either: -megaloblastic - abnormal erythopoiesis in bone marrow -normoblastic - normal erythropoiesis

Case 2- Peripheral Blood Film

Hypersegmented neutrophil

Case 2 continued

difficulties with extremities

Several months later -

Paresthesias of hands and feet

Difficulty using the clutch and gas pedals while driving

PE:

jaundice and neurological deficits

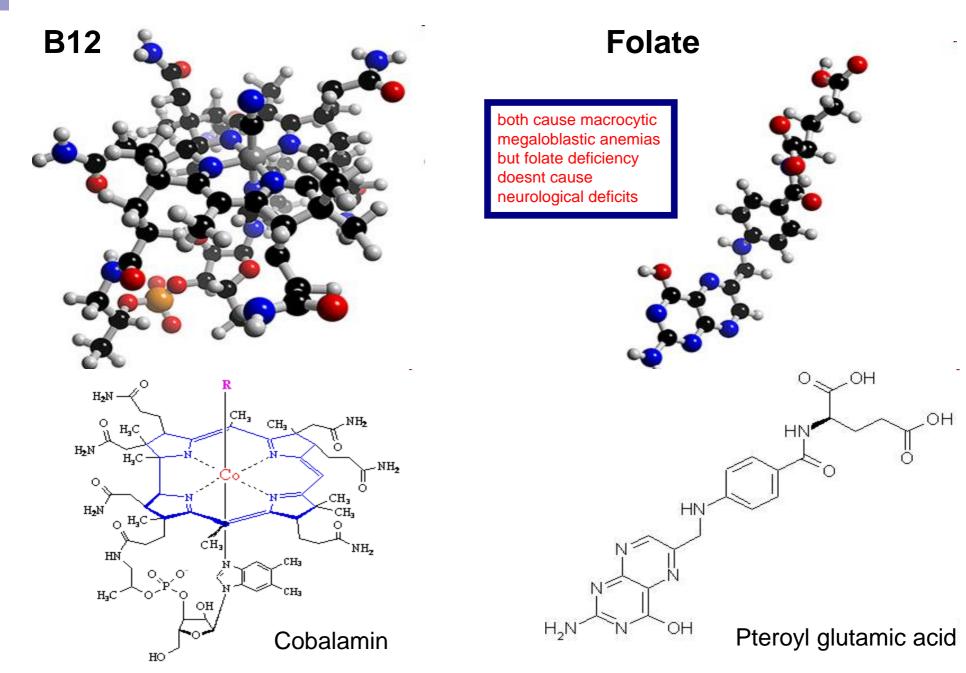
Mild scleral icterus

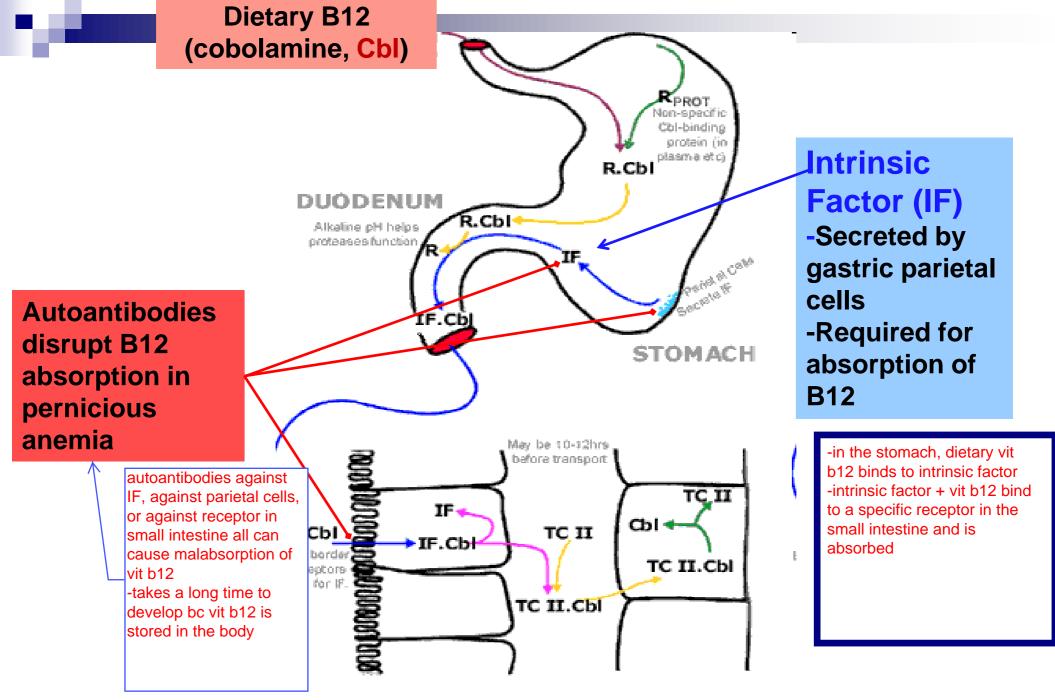
Absent position and vibratory sensation

Diminished two-point discrimination

Case 2 continued

macrocytic anemia + neurological symptoms --> typical for vit b12 deficiency


Diagnostic laboratory evaluation Serum B12 level- 30 (normal > 180)
 Anti-intrinsic factor antibodies positive


Diagnosis-

B12 deficiency Pernicious anemia

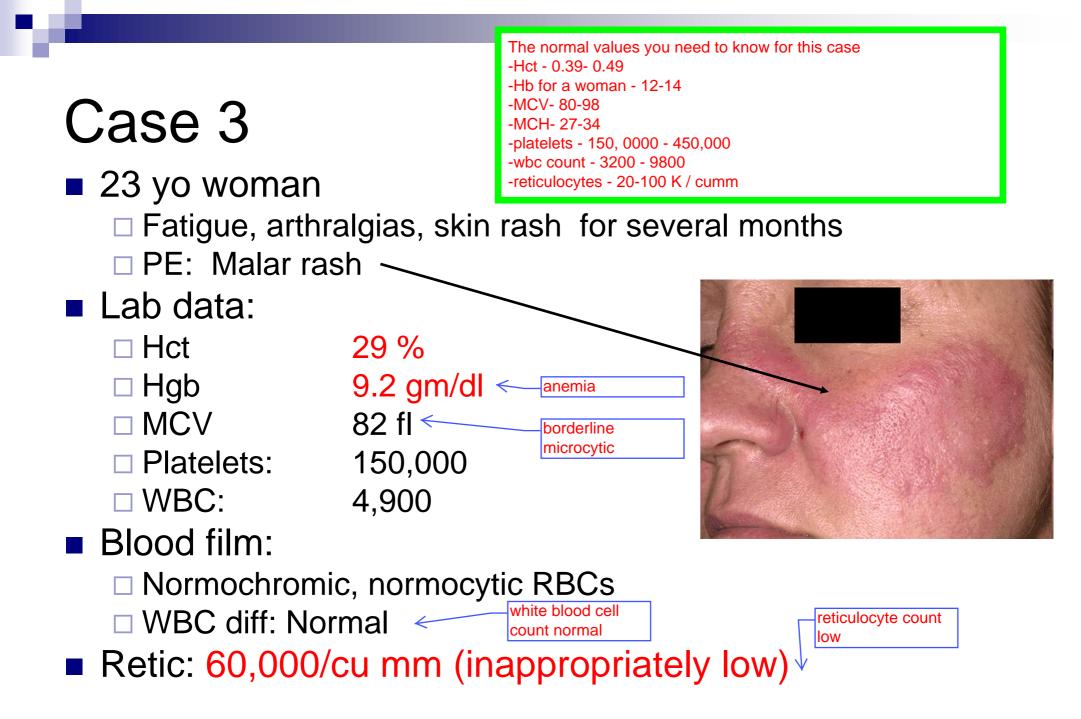
most common cause of b12 deficiency in adults -autoimmune process in which absorption of vit b12 is impaired

Back to the Basics...

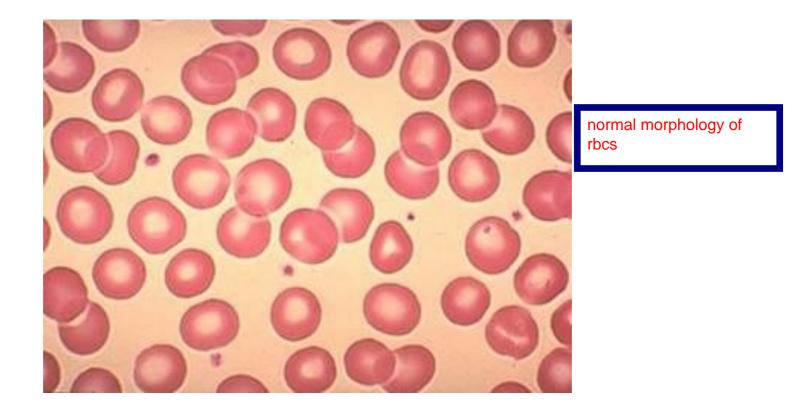
TERMINAL I LEUM BLOOD TISSUE CELL

Actions of B12 and Folate:

folate independent vit b12 actions are responsible for the neurological symptoms in vit b12 deficiency that not seen in folate deficiency


 Folate is directly required for Purine (DNA) synthesis, B12 is indirectly involved through folate metabolism

- □ Only tetra-hydro folate (THF) can participate in purine synthesis
- □ Dietary folate is converted to THF and then to methyl-THF
- □ Methyl-THF can be converted back to THF if B12 is present
 - Only B12 can transfer the methyl group from Methyl-THF to homocysteine
- □ In the absence of B12, most folate is "trapped" as methyl-THF, levels of THF decline, and DNA synthesis suffers
- Treatment with large doses of folate will form "new" THF, bypassing requirement for B12
- Treatment with folate will correct anemia due to folate deficiency or B-12 deficiency but treating will worsen neurological symptoms


Anemia due to B12 or Folate Deficiency

DO NOT treat vit b12 deficiency anemia with folate even though it corrects the anemia because it worsens the neurological symptoms -can treat folate deficiency anemia with folate to correct the anemia

- Treatment with folate will correct anemia due to folate deficiency or B-12 deficiency
- Mitochondrial action of B12: (Folate independent)
 - Adenosyl-Cbl acts as coenzyme for conversion of methylmalonyl-CoA to succinyl-CoA
 - Associated with myelin formation and etiology of neuropathy observed in B12 deficiency
- Neuropathy of B12 deficiency may be aggravated by folate administration
- B12 administration will not correct anemia due to folate deficiency

Case 3- Peripheral Blood Film

Normochromic, normocytic RBCs

Normocytic - Normochromic Anemia and Low Retic Count: differential diagnosis

Primary BM (stem cell) disorders

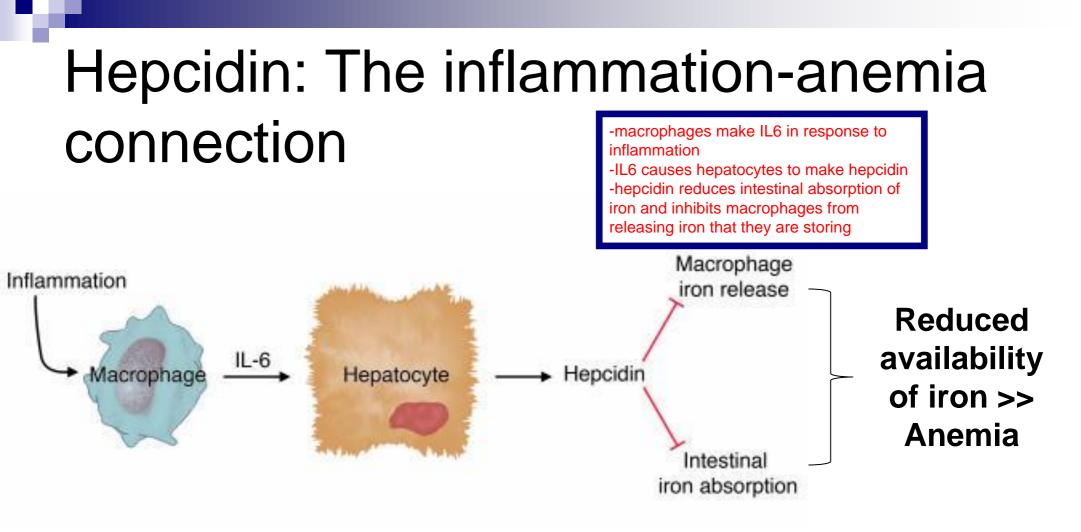
Aplastic anemia
 Pure Red Cell aplasia

Infiltrative disorders

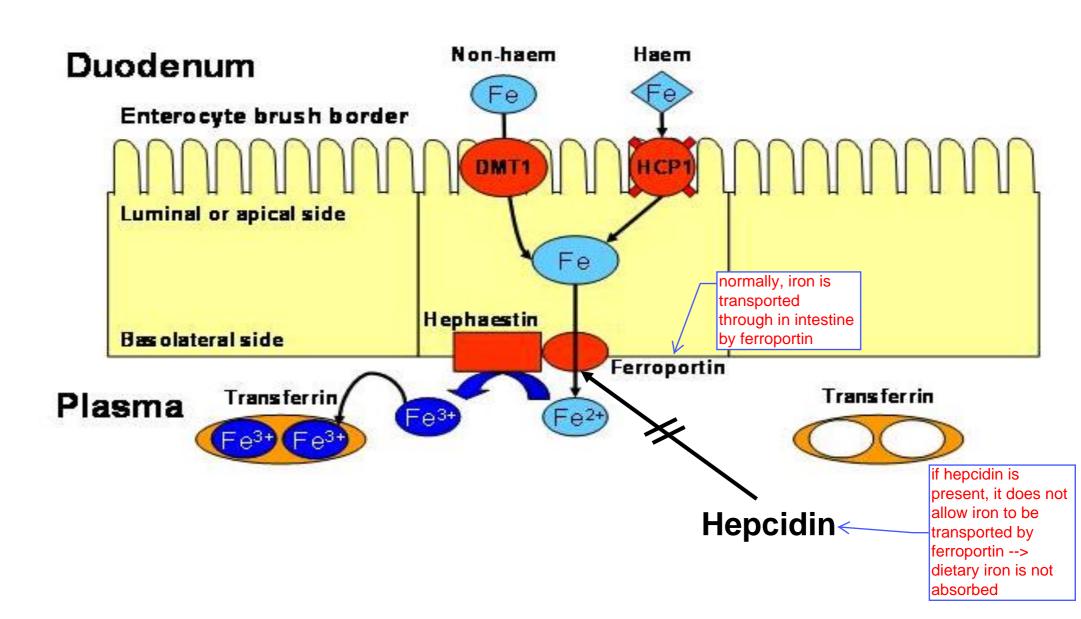
Secondary to systemic illness

Anemia of chronic inflammation

- □ Renal insufficiency
- Endocrine disorders


primary causes of normal red blood cells + anemia + low reticulocyte count -remember that when there is anemia, the reticulocyte count should be higher to compensate, so something is wrong if the reticulocyte count is also low

systemic inflammatory causes


usually microcytic anemia

Case 3: Additional Tests

ESR: 80 mm/hr BUN: 42 Creatinine 2.0 1:1256 Anti Nuclear Antibody Complement C3/C4 Low chronic autoimmune Anti-ds DNA Positive disease- anemia of chronic inflammation Diagnosis inadequate Systemic Lupus Erythematosus (SLE) erythropoiten production may Renal insufficiency worsen anemia \square Anemia of Chronic Disease (= anemia of inflammation) Possibly worsened by low erythropoietin

Anemia of inflammation: the cytokine-hepcidin link Nancy C. Andrews J. Clin. Invest. 2004, 113:1251

Other Molecules Involved In Iron Absorption

These molecules are required for appropriate synthesis of Hepcidin

reduced hepcidin

production

- Mutations lead to reduced hepcidin and excess iron absorption = HEMOCHROMATOSIS < excess iron absorbed due to
- Hemochromatosis (HFE) gene
 - □ Mutations cause adult hemochromatosis

Hemojuvelin

- Mutations cause a severe hemochromatosis in children
- Transferrin receptor 2

Case 4

The normal values you need to know for this case -Hct - 0.39- 0.49 -Hb for a man - 14-18 -MCV- 80-98 -MCH- 27-34 -platelets - 150, 0000 - 450,000 -wbc count - 3200 - 9800 -reticulocytes - 20-100K / cumm

55 yo man One month history of fatigue and palpitations

acute

- PE: Pallor Palpable spleen tip (splenomegaly)
- Lab data:
 - □ Hct: 20 % □ Hgb: 6.9 gm/dl< severe anemia □ MCV: 100 fl < slightly elevated high reticulocytes Normal □ Platelets: □ WBC: Normal 154,000/ cu mm HIGH Retic:

-if anemia develops slowly, cardiovascular/ respiratory adaptation is benefecial -if anemia develops acutely, cardiovascular/ respiratory adaptation is deliterious

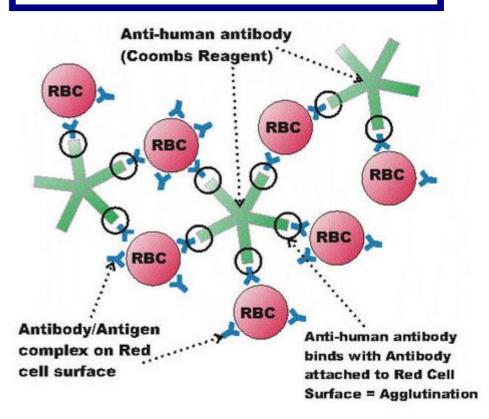
Anemia with Reticulocytosis: Differential Diagnosis Bleeding Rule out first

Hemolytic Anemias

- anemia with high reticulocyte count - bleeding- think about bleeding with body trying to make more blood -hemolytic anemias- mostly congenital. one that is acquired is malaria which isn't a problem in us but huge cause of anemia world wide others autoimmune, prosthetic valves, MAHA -hypersplenism- large spleen sequestering blood
- Immune- Autoimmune, alloimmune, drug induced
- Inherited- Hemoglobinopathies
 RBC membrane/enzyme disorders
- Mechanical Prosthetic valves, Microangiopathic (MAHA)
- □ Infections- Malaria, babesia
- Hypersplenism

Case 4- Peripheral Blood Film

Microspherocytes

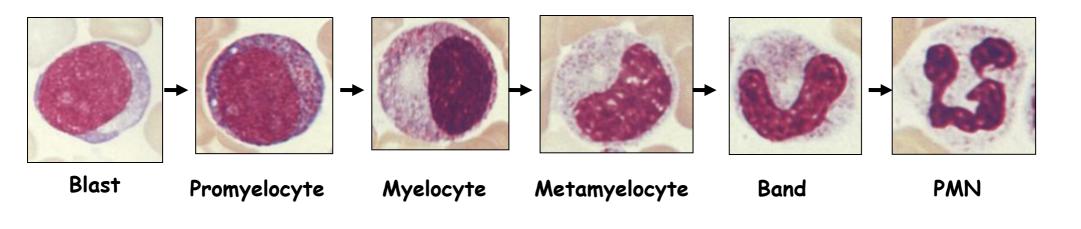

Case 4

continued

- Diagnostic laboratory evaluation
 - □ Direct Coombs test: Positive, 4+, IgG
 - Warm autoantibody eluted from RBCs

Coombs test- looking for presence of antibodies bound to red cells

-take another antibody to recognize human antibodies (Coombs reagent), and these antibodies bind to that autoantibodies on the red cells and cause agglutination that can be seen directly


Diagnosis: Autoimmune hemolytic anemia

Myeloid Differentiation

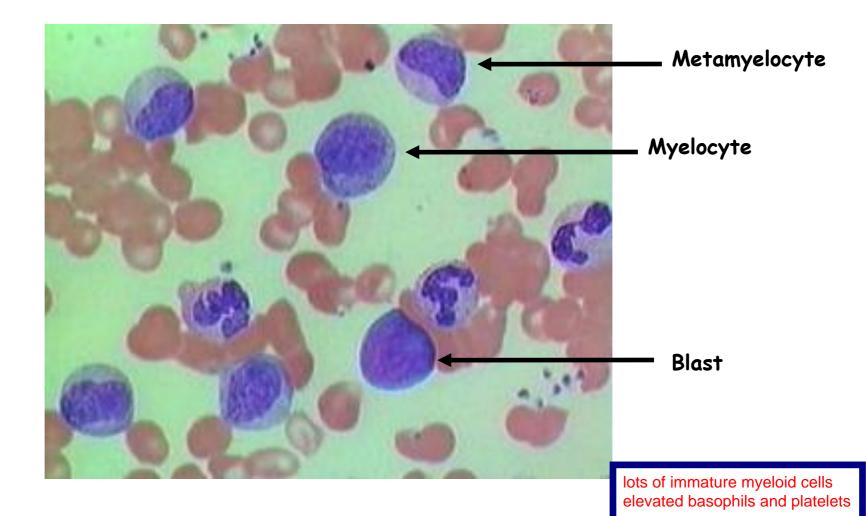
Bone marrow

Peripheral blood

Case 5

42 yo dentist

The normal values you need to know for this case -Hb for a man - 14-18 -platelets - 150, 0000 - 450,000 -wbc count - 3200 - 9800 - Neutrophils - 37-80% - lymphocytes - 10-50% -monocytes - 0-12% -basophils - 0-7% -eosinophils - 0-2%

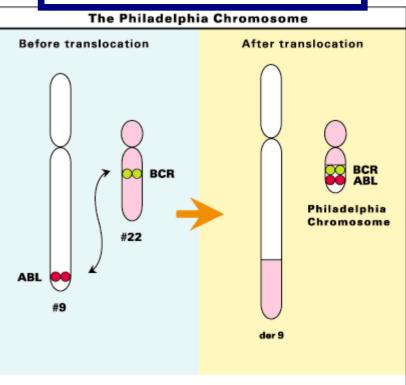

- Turned down as a blood donor because of Hgb of 11.5⁴
- PE Splenomegaly 4cm below left costal margin
- Further testing revealed:
 - □ WBC: 47,000/ cu mm
 - □ WBC diff:Neutrophils 40%
 - □ Bands: 20%
 - Metamyelocytes:16%
 - □ Myelocytes: 8%
 - Promyelocytes:6%
 - □ Blasts: 2%
 - □ Eos: 2%
 - □ Basos: 4%
 - □ Monos: 2%
 - Platelets: 680,000/ cu mm

Immature myeloid cells

moderate anemia

high white cell count with immature myeloid cells -basophils were increased -platelets were increased -basically diagnostic for **CML** but need a blood smear and test for philadelphia chromosome

Case 5- Peripheral Blood Film


Leukocytosis with left shift

Case 5 continued Diagnostic evaluation **Cytogenetics-** Philadelphia chromosome + (due to translocation between chromosomes 9 and 22, producing an abnormal product by splicing ABL and BCR genes)

 Diagnosis: Chronic myelogenous leukemia (CML)

□ A type of chronic myeloproliferative neoplasm

philadelphia chromosome - presence is diagnostic of CML
-translocation of chromosomes 9 and 22 producing a fusion product BCR ABL
-gleevec specifically binds to tyrosine kinase site on BCRABL and is revolutionary drug for treating CML

The Philadelphia chromosome results when a piece of chromosome #9 switches places with a piece of chromosome #22. The translocation forms an extra-long chromosome *9 (called der 9) and an extra-short chromosome #22, which is the Philadelphia chromosome that contains the abnormal, fused BCR-ABL gene.

Chronic Myeloproliferative Neoplasms (MPN)

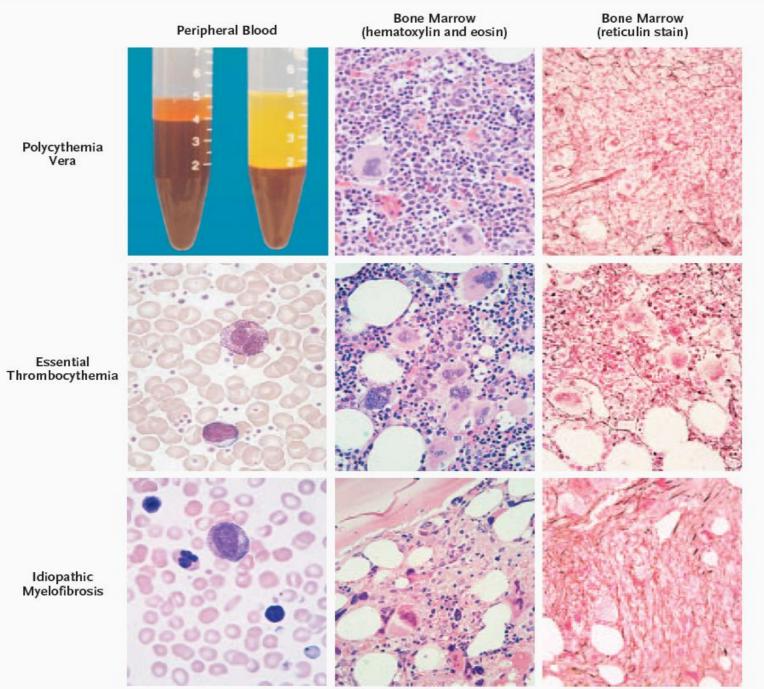
Chronic myelogenous leukemia (CML) — Construction of the second secon

primarily neutrophils

primarily platelets

proliferating

primarily red cells

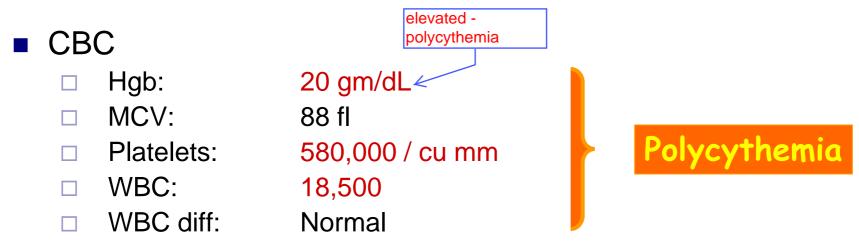

proliferating

- Essential thrombocythemia (ET)

 Plt

Chronic Myeloproliferative Neoplasms: Clinical Features

- Enlarged spleen (except in Essential Thrombocythemia)
- Present with abnormal WBC, RBC, or platelet count
- Thrombosis and bleeding \rightarrow ? Platelet dysfunction
- Must be distinguished from a reactive state, i.e.,
 - \uparrow RBC \rightarrow due to: Hypoxic stimulation Excess Erythropoietin
 - □ \uparrow Plts → due to: infection, inflammation
 - □ ↑ WBC
- Natural history evolve over years. ie. not acute
- Usually NOT associated with fever, night sweats etc


Case 6

60 yo woman

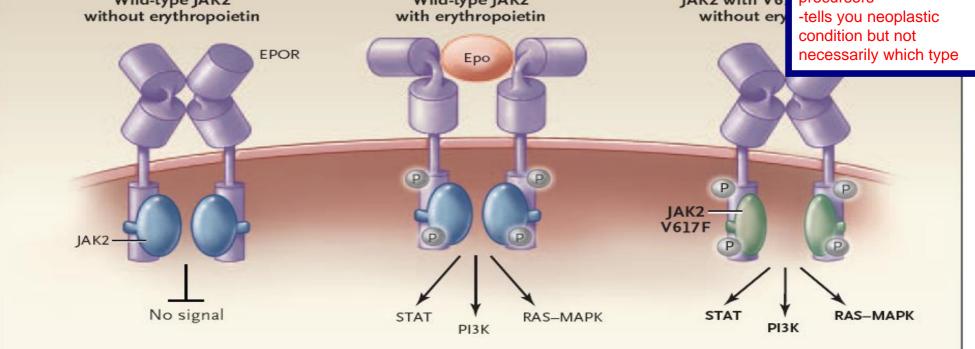
The normal values you need to know for this case -Hb for a woman - 12-14 -MCV- 80-98 -platelets - 150, 0000 - 450,000 -wbc count - 3200 - 9800

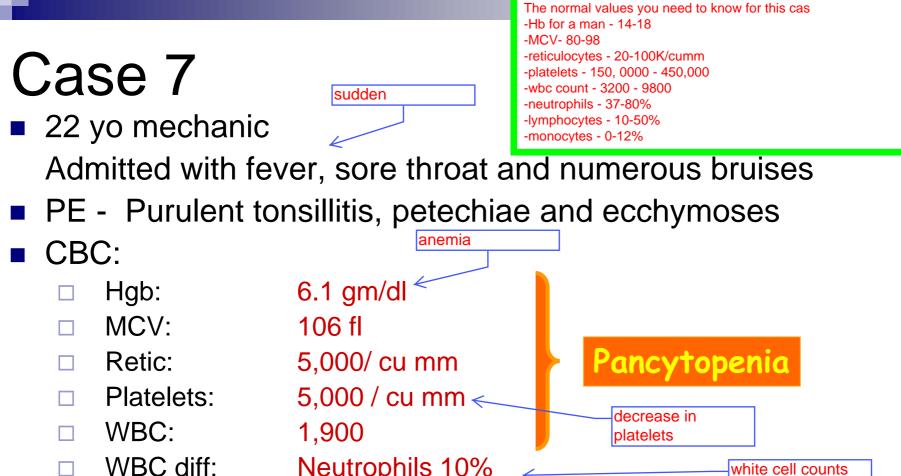
Presents with pruritus, headache and early satiety

PE Splenomegaly 5cm below left costal margin

Smear: No immature cells. Neutrophilia. Thrombocytosis

Case 6 continued


polycythemia may be caused by a reactive process or a neoplasm, so you want to rule out that polycythemia is not a reactive process before jumping to a neoplasm diagosis


- Differential Diagnosis of Polycythemia
 - Secondary
 - Smoking
 - Excessive erythropoietin
 - Primary = Polycythemia vera
- Diagnostic test:

 test used to test for neoplasm polycythemia

- Mutation analysis of JAK2 gene POSITIVE
- DIAGNOSIS Polycythemia Vera

JAK-2 mutation results in activation of JAK-STAT pathway in absence of ligand – "cytokine independent constitutive activation" A Wild-type JAK2 Wild-type JAK2 Mid-type JA

WBC diff: Neutrophils 10%
 Lymphs: 88% (relative lymphocytosis)
 Monos: 2%

 Blood Smear: No immature cells. Severe neutropenia and thrombocytopenia confirmed. RBCs normal

Differential Diagnosis of Pancytopenia

- Reduced Production:
 - Hematologic malignancy –

Acute leukemia Myelodysplasia Myelofibrosis

□ Aplastic anemia <

□ Bone marrow suppression

- Drugs, radiation, infections, toxins
- Metastatic tumor in marrow
- □ B12/folate/copper deficiency
- Increased destruction:
 - Paroxysmal nocturnal hemoglobinuria
 - Hemophagocytic syndrome
 - Hypersplenism

decrease in production of all 3 cell lines --> pancytopenia

Case 7- Bone marrow aplastic anemia show hypocellular bone marrow Normal BM Biopsy Aspirate

Diagnosis: Aplastic Anemia

The normal values you need to know for this case -Hb for a woman - 12-14 -MCV- 80-98 -platelets - 150, 0000 - 450,000 -wbc count - 3200 - 9800

Case 8

29 yo woman, previously healthy

Presents with heavy menstrual bleeding, numerous bruises

PE: Petechiae and ecchymoses. No splenomegaly

Lab data:

- □ Hgb: 13.4 gm/dL
- □ MCV: 85 fl
- □ Platelets: 5,000 / cu mm <_____thrombocytopenia
- □ WBC: 10,500
- WBC diff: Normal
- □ Smear: No in

No immature cells. Thrombocytopenia. No schistocytes

DIAGNOSIS: Immune thrombocytopenic purpura (ITP)

Differential Diagnosis of Thrombocytopenia

Impaired production

Accelerated destruction

Disorder of distribution (hypersplenism)

Multifactorial

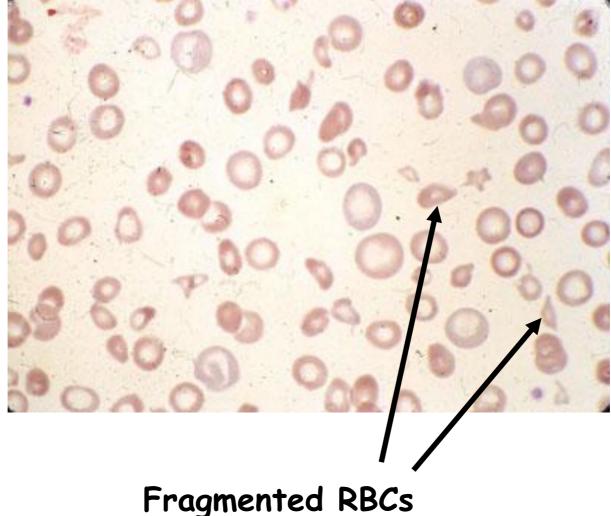
in this case it was autoimmune destruction of platelets- antibodies against platelets- underlying cause largely unknown - may also have alloantibodies from multiple blood transfusions -is production low? is there destruction?

Differential Diagnosis of Thrombocytopenia

- Impaired production
 - Drugs
 - Infections
 - □ Aplastic anemia
 - □ Hematologic malignancy
 - □ Myelophthisis
 - ☐ Myelodysplasia
 - □ B12/folate deficiency

Differential Diagnosis of

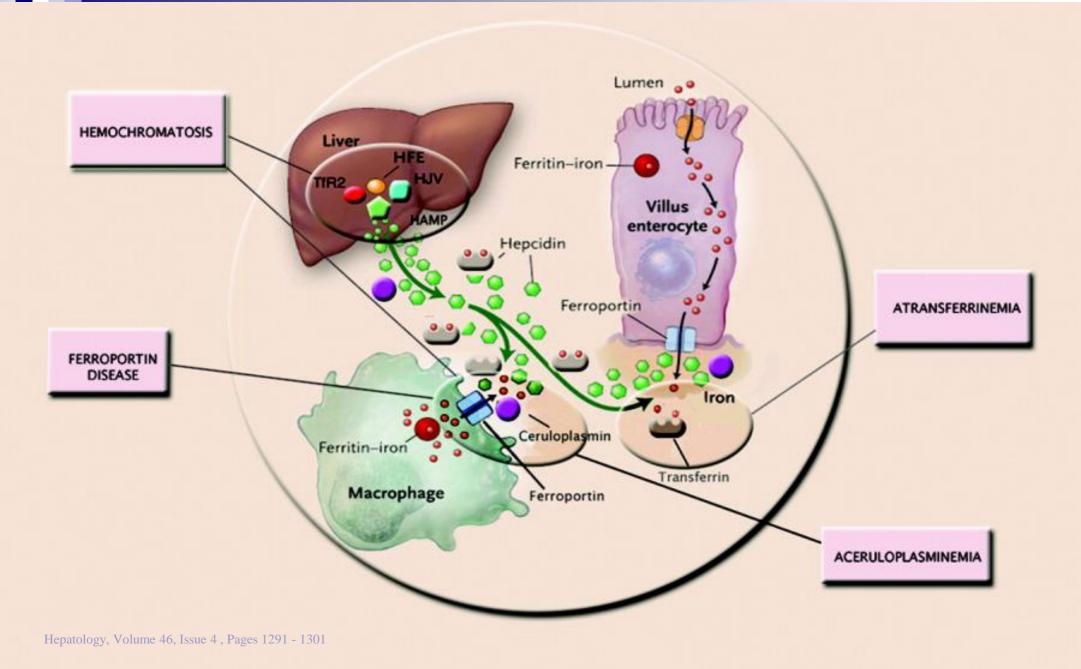
Thrombocytopenia


- Accelerated destruction

 - Drugs, including Heparin
 - Collagen vascular diseases
 - Infections including HIV
 - Disseminated intravascular coagulation (DIC)
 - □ TTP/HUS
 - Alcohol
 - Inherited platelet disorders
 - Post-transfusion purpura
 - Non-Hodgkin lymphomas
- Disorder of distribution (hypersplenism)
- Multifactorial

clinically most important (life threatening) are red

Microangiopathic hemolytic anemia


Hemolysis due to intravascular fragmentation of red blood cells; may be due to microcirculatory lesions or the insertion of cardiac or intravascular prosthetic devices.

Summary

-thoroughly familiarize yourself with cbc -make diagnosis on which cell line is defective -look at morphology to classify type of anemia -think about likely etiologies

- CBC and peripheral blood smear are the mainstays of diagnosing disorders of blood cells
- Anemia is very common worldwide and has many causes
- Anemias are classified based on red cell morphology followed by an etiological classification using special tests
- Leukocytosis is often reactive but various leukemias must be considered
- Immune destruction of platelets is a common cause of thrombocytopenia but decreased production due to bone marrow abnormalities must also be considered.

EXAMPLES OF ANEMIA RESULTING FROM DECREASED RED CELL PRODUCTION

Туре	Mechanism	Diagnostic Features	Major Etiologic Factors
Iron Deficiency Anemia	Impaired heme synthesis	Hypochromia and microcytosis; decreased serum iron and increased total iron binding capacity; decreased serum ferritin	Dietary deficiency in infants and preadolescents; excess menstrua bleeding; chronic blood loss from the GI tract such as malignancy
Pernicious Anemia	Autoimmune gastritis leading to lack of gastric intrinsic factor and failure of vit B12 absorption; vit b12 deficiency delays DNA replication because it a cofactor in synthesis of THF	Pancytopenia, oval macrocytes, and hypersegmented neutrophils; megaloblastic hyperplasia; achlohydria; anti-intrinsic factor antibodies; hyperreflexia; absent position and vibration sensations; impaired vit b12 absoprtion corrected by intrinsic factor	Autoimmunity
Folate Deficiency	Delayed DNA replication	Pancytopenia, oval macrocytes, and hypersegmented neutrophils; megaloblastic hyperplasia	Dietary deficiency; malabsorptio syndromes
Aplastic Anemia	Greatly diminished hematopoiesis	Pancytopenia, reticulocytopenia, marked hypocellularity of the bone marrow	Toxic drugs and chemicals; often idiopathic
Anemia of chronic disease	Diverse mechanisms; macrophages produce IL6, which causes hepatocytes to produce hepcidin and reduce iron absorption	Anemia most often normochromatic and normocytic or macrocytic; may be hypochromic and microcytic with decreased serum iron-binding capacity	Various chronic diseases, especially rheumatoid arthritis o SLE, renal disease and chronic infection
Myelophthisic	Bone marrow replacement; usually by a malignant tumor	Severe anemia; small numbers of nucleated red cells and immature granulocytes in the peripheral blood; tumor cells in the bone marrow	Malignancy

these in this lecture except this last one

турс	Mechanism	Diagno
we only covered this one in this lecture. Sickle Cell is most common type seen at Duke. Dr. H	OF ANEMIAS RESULTING FROM INCREASED RED CELL PF	ODUCTION

Type	Mechanism	Diagnostic Features	Comments
Warm antibody autoimmune hemolytic anemia (primary and secondary forms)	IgG autoantibodies combine with red cell surface antigens; Fc combining site of IgG antibody further reacts with Fc receptor of phagocytic cells	Anemia, spherocytosis, and reticulocytosis; unconjugated hyperbilirubinemia and acholuric jaundice; positive direct Coombs test	Often secondary to lymphocytic neoplasms, Hodgkins disease, or autoimmune disease; sometimes associated with methyldopa or penicillin therapy
Hemolytic disease of the newborn (erythoblastosis fetalis)	Maternal alloimmunization of fetal red cell antigens; classically of Rh system; can also be caused by alloimmunization to ABO blood groups	Rising titer of maternal anti-Rh antibodies during the later part of pregnancy; cord blood at delivery contains immature red cell precursors; direct Coombs test positive on cord blood; progressive increase in postnatal unconjugated bilrubin	Prevented by administration of anti-Rh antibody to mother at time of delivery of first and subsequent children
Hereditary spherocytosis	Red cell membrane skeletal protein abnormality	Autosomal dominant; anemia, spherocytosis, and reticulocytosis; increased mean corpuscular hemoglobin concentration; unconjugated hyperbilirubinemia and acholuric jaundice; increase erythrocyte osmotic fragility in hypertonic saline; splenomegaly	Quantitative deficiency of spectrin due to diverse mechanisms
Glucose 6 phosphate dehydrogenase deficiency	Failure of erythrocyte hexose monophosphate shunt under oxidative stress	Self limited hemolytic anemia; reduced activity of erythrocyte G6PD	X linked inheritance
Sickle cell anemia	B globin hemoglobinopathy	Anemia and reticulocytosis; sickle shaped erythrocytes demonstrable on peripheral blood smear; homozygosity for hemoglobin S demonstrated with electrophoresis	Severe anemia, recurrent painful and asplastic crisises, and nonhealing leg ulcers; recurrent splenic infarcts with progressive fibrosis result in autosplenectomy
B thalassemia major	Diverse mutations in B globin gene causing decreased synthesis of B globin chains, aggregation of alpha chains causes hemolytic anemia and ineffective erythrocytosis	Severe anemeia; thalassemic red cell morphology; increase hemoglobin F	Occurs frequently in Mediterranean populations
Alpha thalessemia	Deletion of one or more of the four alpha globin genes	Differ according to the number of deletions	No clinical abnormalities with one gene deletion' mild to moderate thalessemic state with 2 or 3 deletions; intrauterine death with 4 deletions- hemoglobin barts in fetal life and hemoglobin H in adult life