We'll cover these in this lecture

Myelodysplasia Acute Myeloid Leukemia Chronic Myelogenous Leukemia Non Hodgkin Lymphoma Chronic Lymphocytic Leukemia Plasma Cell (Multiple) Myeloma Hodgkin Lymphoma APPROVED

Overview

- Case
- Pathophysiology
- Diagnosis
- Prognosis
- Epidemology/Statistics
- Clinical
- Treatment

Pathology

Clinical

Patrick J. Buckley, MD, PhD Professor of Pathology Duke University Medical Center Louis F. Diehl, MD Professor of Medicine Duke University Medical Center

Hematopoietic Neoplasms

Introduction

Leukemia

- Monoclonal neoplasm of bone marrow cells typically characterized by a proliferation of immature cells (blasts) in bone marrow/blood
 ^{2 basic types (per the previous gaph)}
- Major types are *lymphoid* and nonlymphoid (the latter commonly called "*myeloid*" leukemia)
- Divided into *acute* (develops over weeks to months) and *chronic* (develops over months)

Lymphoma

Monoclonal neoplasm of lymphocytes

Usually present as masses or lumps, but some can have leukemic ("liquid") phase These lymphocyte proliferations usually form tumors (-omas) in lymph nodes and/or in extranodal lymphoid tissues

Major categories are *T-cell* lymphomas and *B-cell* lymphomas

Tools

Tools of the Trade

Techniques used for the diagnosis of hematopoietic and lymphoid disorders

Morphology

Gives you lots of info and helps determine what other tests should be performed (you don't want to do unnecessary tests)

Flow Cytometry

Flow Cytometry Example: Acute Leukemia

You can separate cells by seeing how strongly they express CD45 (leukocyte Ag). Anything born in the blood marrow has CD45. You can also tell how complex a cell is, like if it has granules which scatter light even without an Ab on its surface.

Immunohistochemistry

Cytochemistry

- Detection of substances (usually enzymes) associated with certain cell types
- Used to determine cell lineage in acute leukemia (myeloperoxidase/monocyte esterase) but sometimes for other purposes e.g., tartrate resistent acid phosphatase in hairy cell leukemia

Indicative of myeloid leukemia

Cytochemistry

Myeloperoxidase in AML

Look for Ags that should be there but aren't, or Ags that are there but shouldn't be. Also look at the number of cells

Monocyte esterase in acute monocytic leukemia

Cytogenetics

Cytogenetics and molecular genetics:

some chromosomal changes detected by standard cytogenetics (karyotype analysis) and **FISH** are of diagnostic and prognostic importance

Probes labelling specific parts of the chromosome

Molecular Techniques

Glossed over. Just know we'll keep seeing more in the future of medicine

- B- and T-cell clonality studies by pcr to help diagnose lymphoma
- Detecting translocations (e.g., bcr-abl in CML) and mutations by pcr
- Sequencing genes (e.g., IgH in CLL)
- Gene expression studies
-and more to come

If all B-cells have the same Ig receptor gene, then they are clonal

Molecular Techniques Clonality

For example, determining that all the B cells in a tissue have the same IgH gene rearrangement allows a diagnosis of lymphoma (as opposed to a polyclonal = reactive process)

Molecular tests for clonality

Capillary electrophoresis of pcr products

Disease 1

Myelodysplasia

Case 1 Read it

- Patient 1: 68 year old man seen for pancytopenia picked up during an annual physical examination. One year ago his WBC 4,100, Hct 40.4% and platelet count 145,000. His MCV was 101. He is well.
- Physical examination:
 - LN: not enlarged
 - ABD: no organomegaly
- LAB:
 - Hct: 38.2%
 - WBC: 3985
 - Platelet: 104,000
 - MCV: 102.3

Case 1

All 3 cell lines affected (anemia, leukopenia, thrombocytopenia)

- ⁹ Physical examination:
 - LN: not enlarged
 - ABD: no organomegaly
- LAB:

Picked up

- Hct: 38.2%
- WBC: 3985
- Platelet: 104,000
- MCV: 102.3

Case 1

• History:

Normal

 68 year old man seen for pancytopenia picked up during an annual physical examination. One year ago his WBC 4,100, Hct 40.4% and platelet count 145,000. His MCV was 101. He is well.

Five years ago he had a medical evaluation with WBC 5,300 cells/mm3, Hct 45.5%, platelet count 278,000 cells/mm3 and MCV 92.

 Social History: worked in the manufacture of rubber products from 1953 to 1965. Used to use benzene

- Physical examination:
 - LN: not enlarged
 - ABD: no organomegaly
- LAB:
 - Hct: 38.2%
 - WBC: 3985
 - Platelet: 104,000
 - MCV: 102.3

Case 1

Date	WBC	Hct	Platelet	MCV
5 years ago	5300	45.5	278,000	92
1 year ago	4100	40.4	145,000	101
Now	3985	38.2	104,000	102.3
	Gradual decrease			Gradual increase

Gradual increase in cell size

Myelodysplasia: Pathophysiology Normal Apoptosis

Apoptosis Programmed cell death

Myelodysplasia: Pathophysiology Apoptosis Defective: Occurs Early

Myelodysplasia: Pathophysiology Apoptosis Defective: Occurs Early

Definition - Standard

Prof finds this definition of little use and gives his own on the next slide

- Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis and peripheral cytopenias.
 - Clonal: All abnormal cells come from a single, common, precursor cell
 - Ineffective hematopoiesis: Immature cells do not develop effective develop into mature cells or the mature cells die early, resulting in too few effective peripheral blood cells

Definition - Explanatory

 The developing hematopoietic cell dies before it reaches maturity. High yield!

Myelodysplasia: Pathophysiology Genetic Defect #1: Apoptosis Defect

Rosenfeld, List. Leukemia 2000 Jan; 14(1): 2-8

Myelodysplasia: Pathophysiology #2: Apoptosis/Maturation Defect

Rosenfeld, List. Leukemia 2000 Jan; 14(1): 2-8

Myelodysplasia Diagnosis

- Morphology
- Cytogenetics

Myelodysplasia Diagnosis

Pathology

Myelodysplasia

Morphology

Myelodysplastic Syndrome

Dysplastic Erythroid Precursors

relatively mature

Dysplastic Erythroid Precursors: Ringed Sideroblasts

Abnormal deposition of iron in mitochondria

Ringed sideroblasts. Abnormal deposition of iron in mitochondria

Dysplastic Granulocytes

Normal granulocyte precursors In bone marrow

Decreased number of hypogranular, hypolobated granulocytes in blood

Best viewed in periphery

Dysplastic Megakaryocytes

Normal megakaryocytes

Should have connected nuclei

Small, dysplastic "pawn ball-like" megakaryocytes

separated nuclear lobes

Myelodysplasia: Diagnosis Cytogenetic

	Karyotype				
You can have normal cytogenetics and still have myelodysplasia,	Normal	53%			
	Abnormal	47%			
different	Complex	11%			
abnormalities with myelodysplasia	Single/double	36%			
	Single abnormalities				
	Del (5q)	6%			
	-7/del (7q)	4%			
	-7	3%			
	del(7q)	1%			
	+8	6%			
	-Y	2%			
		•			

Sole, Haematologica 90:1168-1178, 2005

Myelodysplasia Classification

Old scheme that we've since updated to add more features

Disease	No affected cell lines	Cell ularity	<i>No lines with dysplasia</i>	Percent blasts Blood	Percent blasts BM	<i>Median Survival Years</i>
RA with ringed sideroblasts	1	N or I	1	< 1%	<5%	6.9
Refractory anemia (RA)	1	N or I	1	< 1%	<5%	4.2
RA with Excess Blasts (RAEB)	<u>></u> 2	Ι	3	< 5%	5-20%	1.5
RA in Transformation (RAEB-T)	<u>></u> 2	I	3	> 5%	21-30%	.6

This is the kicker: higher % blasts in bone marrow = worse prognosis

In prognosis: The most important thing is the number of blasts.

Myelodysplasia: Classification Classification and Pathophysiology

Rosenfeld, List. Leukemia 2000 Jan; 14(1): 2-8

Classification & Prognosis

Classification

- Cell lines affected
- Blasts in bone marrow

- Prognosis
 - Blasts most important factor!
 - Cytogenetics
 - Cytopenias

Myelodysplasia:Prognosis Overall Surivival All go relentlessly downhill

Blood, Vol. 89 No. 6 (March 15), 1997: pp. 2079-2088

Myelodysplasia:Prognosis Overall Surivival RARS

Blood, Vol. 89 No. 6 (March 15), 1997: pp. 2079-2088

Myelodysplasia: Statistics Incidence

1/10,000 people per year

Probably more, but we can't pick them all up

- 7% patients treated with alkylator chemotherapy
 - incidence peaks at 7 years
- Increasing

1% of the 100,000 cases of breast cancer treated with alkylator chemo will get myelodysplasia

Myelodysplasia: Statistics Epidemology: Environmental

Strom, Leukemia 19:1912, 2005

Myelodysplasia: Statistics Epidemology: Chemotherapy

- Alkylator therapy
- Topoisomerease inhibitors

Myelodysplasia Clinical Features

	Characteristic	Value		
	Age	69+/- 10		
	Sex (M/F)	1/1		
	Disease duration (mo)	9.3 +/- 9.8		
	Hb (g/dL) Usually low Hg (fatigue) brings them in	8.64 +/- 11.7		
1	1 ANC x 10(9)/L	2.2 +/-1.8		
/	Platelet count x 10(9)/L Often normal whe they're diagnosed	n 213 +/- 168		
1	1 ANC x 10(9)/L Platelet count x 10(9)/L Often normal whe they're diagnosed	2.2 +/-1.8 213 +/- 168		

Absolute neutrophil count

Hellstrom-Lindberg, Blood 92 (July) 1998:68-75.

Myelodysplasia: Treatment

- Supportive care
 - Growth factors
- Transfusions
 - Red blood cells
 - platelets
- Infection treatment
- Drug therapy

Myelodysplasia: Treatment Azacitadine: Overall Survival

Silverman (CALGB) J Clin Oncol 20:2429-2440, 2002

Myelodysplasia: Treatment Azacitadine: Overall Survival

Silverman (CALGB) J Clin Oncol 20:2429-2440, 2002

MDS Treated with Azacitidine Quality of Life Decreased need for transfusions

Decreased need for transfusions and increased QOL, despite only extending life by a few months

	#	Fatigue	Dyspnea	Social Function	Overall QOL
Azacitidine	99	42.8	36.7	60.8	53.6
Observation	92	47.4	43.0	43.1	38.3

Difference between staying in bed all day and being able to do everyday activities

Silverman (CALGB) Proceedings ASCO, 1998, Abstract #53 Silverman (CALGB) J Clin Oncol 20:2429-2440, 2002

- 43 patients
- Anemia
 - Transfusion dependent
 - Symptomatic
- Erythropoietin resistant or not eligible
- Lenalidomide dosing
 - 25 mg daily PO
 - 10 mg daily PO
 - 10 mg daily for 21/28 days PO

- Response
 - 24 (56%) responded
 - 20 independence from transfusion
 - 1 Hb increase of 2 g
 - 3 had 50% decrease in transfusion
 - Interstitial deletion involving chromosome 5q31.1
 - 83% response
- Adverse events
 - Neutropenia 65%
 - Thrombocytopenia 74%

Table 3. Erythroid Responses.						
Lenalidomide Dose	No. of Patients	Erythroid Response Weeks to Response				
		Major	Minor	Total	Median ±SD	Range
number (percent)						
25 mg/day	13	6	0	6 (46)	9.0±5.8	2.5-18.5
10 mg/day	13	6	1	7 (54)	10.5±6.4	2-17.5
10 mg/day for 21 days	17	9	2	11 (65)	11.5±10.3	6–24
Total	43	21 (49)	3 (7)	24 (56)		—

Myelodysplastic cells went away in 83% of patients who had this cytogenetic abnormality, though some had later recurrence		Cytogenetic Responses According to Chromosomal Abnormality.			
		osomal Abnormality	No. of Patients	≥50% Decrease in Abnormal Cells in Metaphase	Complete Cytogenetic Response
		,		number of patients (percent)	
Del (5) (q Isola With Del (20) (t(1;22) (q Other* Total		(31.1)	12	10 (83)	9 (75)
		ated	11	9	8
		n trisomy 21	1	1	1
		(q11.2)	2	0	0
		(21p11.2)	1	1	1
			5	0	0
			20	11 (55)	10 (50)

Table 5. Cytogenetic Responses According to Chromosomal Abnormality.					
Chromosomal Abnormality	No. of Patients	≥50% Decrease in Abnormal Cells in Metaphase	Complete Cytogenetic Response		
		number of patien	ts (percent)		
Del (5)(q31.1)	12	10 (83)	9 (75)		
Isolated	11	9	8		
With trisomy 21	1	1	1		
Del (20) (q11.2)	2	0	0		
t(1;22)(q21p11.2)	1	1	1		
Other*	<u> </u>	0	0		
Total	20	11 (55)	10 (50)		

Myelodysplasia: Treatment Stem Cell Transplant

Blood, Vol. 95 No. 4 (February 15), 2000: pp. 1188-1194

Myelodysplasia Summary

- Developing hematopoietic cells die early
- No mature cells Causes the Sx
- Slowly the normal cells go away
- Tendency toward leukemia Biggest prognostic factor
- Survival
 - Long if early and favorable
 - Short if late and unfavorable

Disease 2

Acute Myeloid Leukemia

Case 2 Read it

- 64 year old man, previous healthy, referred for pancytopenia. He notes some fatigue, progressive dyspnea and easy bruising on the trunk as well as the back and legs.
- PMH: non contributory •

- PE: normal except for multiple ecchymosis
- LAB:
 - WBC 2,300
 - Neut 32%
 - Lymph 45% •
 - Mono 15% •
 - Atypical lymphs 8%
 - Hct 25%
 - Platelet 45,000

Case 2

- 64 year old man, previous healthy, referred for pancytopenia. He notes some fatigue, progressive dyspnea and easy bruising on the trunk as well as the back and legs.
 - PMH: non contributory

- PE: normal except for multiple ecchymosis
- LAB:
 - WBC 2,300
 - Neut 32%
 - Lymph 45%
 - Mono 15%
 - Atypical lymphs 8%
 - Hct 25%
 - Platelet 45,000

Abnormal. Most don't people knock their chest against things like with their shins or arms

Myeloid Cell Development

http://focosi.altervista.org/blood-cell-development.jpg

Acute Myeloid Leukemia: Pathophysiology Proceed Through Development Cycle

Acute Myeloid Leukemia: Pathophysiology

Feedback Control

Ye olde negative feedback loop

Acute Myeloid Leukemia: Pathophysiology Proceed Through Development Cycle Broken

Acute Myeloid Leukemia: Pathophysiology Proceed Through Development Cycle Defective

Definition - Explanatory

 Overproduction of an immature cell that does not develop into a normal mature cell

Acute Myelogenous Leukemia: Diagnosis Diagnosis

- Morphology
- Immunophenotype
- Cytogenetics

Acute Myelogenous Leukemia

Pathology

Acute Myeloid Leukemia (AML)

Classification and Morphology

AML

- The World Health Organization (WHO) classifies AML according to the presence of certain recurrent genetic abnormalities and whether they arose in the setting of MDS or after chemotherapy Like alkylating chemo before
- All other AML is classified by morphology and stage of differentiation based on the French-American-British (FAB) system

AML Without Maturation (for comparison with other subtypes)

(FAB AML M1)
SKIP

M1 Bone Marrow Biopsy: Increased Blasts

M1 Myeloperoxidase Stain

AML M1: Flow Cytometry

AML with Recurrent Genetic Abnormalities

SKIP

AML with t(8;21)(q22;q22) (Core binding factor alpha/ETO)

10% of "AML with Maturation" (FAB AML M2) Looks like blasts with a little maturation

M2: Bone Marrow Biopsy

M2 Bone Marrow Aspirate

AML with inv(16)(p13.q22) or t(16;16)(p13.1;q22) (Core binding factor beta/MYH11)

Acute Myelomonocytic Leukemia

Looks like precursors of monocytes. Very specific subset of AML, but with one of the better prognoses

with Eosinophils

(FAB AML M4_{eos})

M4_{eos} : Bone marrow aspirate This appearance would indicate inv(16), but "cytogenetics trumps everything"

Abnormal granules

Eosinophil

Acute Promyelocytic Leukemia (FAB AML M3)

APL Blood (Abnormal Promyelocytes)

Normal Promyelocytes

APL: Flow Cytometry

Acute Monocytic Leukemia (associated with translocations of 11q23 in some cases, especially children)

(FAB AML M5)

AML M5: Bone Marrow Biopsy

Cytochemical Stain: Monocyte Esterase (ANAE)

CD4 and CD14 identify monocytes

Acute Myelogenous Leukemia: Diagnosis Cytogenetics t(8;21) Just an explanation of

- An exchange of a piece of the long arm of chromosome 8 (ETO gene at 8q22) and the long arm of chromosome 21 (AML1 gene at 21q22).
- The critical product resulting is bringing the AML1 gene over to chromosome 8. This deregulates the gene product which functions in controlling maturation.
- Hence, the cells do not mature.

Acute Myelogenous Leukemia: Diagnosis Cytogenetics Outcome depends on the cytogenetics. Can be put in 3

	groups (explained later)			
Abnormaity	Frequency	CR	Deaths in Remission	Relapse 5 year	OS 5 year
T(15;17)	12	87%	13%	37%	63%
T(8;21)	7	98%	15%	29%	69%
Inv(16)	3	88%	9%	42%	61%
No abn	42	88%	15%	53%	42%
+8	9	84%	12%	44%	48%
11q23	3	87%	9%	46%	45%
+21	2	80%	11%	50%	47%
Del(7q)	1	75%	19%	59%	23%
Del(9q)	1	100%	9%	39%	60%
Complex	5	67%	12%	68%	21%
-7	3	54%	8%	80%	10%
Del(5q)	1	57%	14%	85%	11%
-5	1	42%	12%	90%	4%

Grimwade, Blood 92:2322, 1998

Acute Myelogenous Leukemia: Classification French American British (FAB) Classification

FAB Type	Name	Comment
MO	Undifferentiated	Primitive cell; no differentiation
M1	Myeloblast	Some differentiation to granulocytic series
M2	Myeloblast with maturation	More differentiation to granulocytic series
M3	Promyelocytic	Differentiation to progranulocyte series
M4	Myelomonocytic	Myeloid and monocytoid series
M5	Monocytic	All monocytic series
M6	Erythroleukemia	Differentiation to erythroid series
M7	Megakaryocytic	Differentiation to megakaryocytic series

Myeloid Cell Development versus Classification

FAB Type	Name	Comment
M0	Undifferentiated	Primitive cell; no differentiation
M1	Myeloblast	Some differentiation to granulocytic series
M2	Myeloblast with maturation	More differentiation to granulocytic series
M3	Promyelocytic	Differentiation to progranulocyte series
M4	Myelomonocytic	Myeloid and monocytoid series
M5	Monocytic	All monocytic series
M6	Erythroleukemia	Differentiation to erythroid series
M7	Megakaryocytic	Differentiation to megakaryocytic series

Acute Myelogenous Leukemia: Prognosis Cytogenetics

Abnormaity	Frequency	CR	Deaths in Remission	Relapse 5 year	OS 5 year
T(15;17)	12	87%	13%	37%	63%
T(8;21)	7	98%	15%	29%	69%
Inv(16)	3	88%	9%	42%	61%
No abn	42	88%	15%	53%	42%
+8	9	84%	12%	44%	48%
11q23	3	87%	9%	46%	45%
+21	2	80%	11%	50%	47%
Del(7q)	1	75%	19%	59%	23%
Del(9q)	1	100%	9%	39%	60%
Complex	5	67%	12%	68%	21%
-7	3	54%	8%	80%	10%
Del(5q)	1	57%	14%	85%	11%
-5	1	42%	12%	90%	4%

3 groups (on next slide)

Grimwade, Blood 92:2322, 1998

Acute Myelogenous Leukemia: Prognosis Cytogenetics

Prognostic category	Abnormality	Survival	
Favorable	t(8;21) inv(16) t(15:17)	60%	
Intermediate	Normal +8	40%	
Poor	-5, -5q -7 11q23 Complex	10%	

Acute Myelogenous Leukemia: Prognosis

Grimwade, Blood 92:2322, 1998

Acute Myelogenous Leukemia: Statistics Statistics

- Median age: 62-65 Older persons disease
- 1 case per 20,000 people at age 60
- 1% of cancer deaths
- 2.5 deaths per year per 100,000 people
- Slight increase in males
- Slight increase incidence in Eastern European Jews

Acute Myelogenous Leukemia: Statistics Incidence Rates per 100,000/year

SEER Incidence Rates

Acute Myelogenous Leukemia Epidemiology/Etiology

- Ionizing radiation
- Chemicals
- Drugs
 - alkylating agents
 - cyclophosphamide
 - chlorambucil
 - melphalan
 - topoisomerase II inhibitors
 - etoposide
- Environmental factors

- Genetic abnormalities
 - Down's Syndrome
 - Bloom's Syndrome
 - Fanconi's anemia
- Viruses? No
- Immunological deficiency
 No

Acute Myelogenous Leukemia: ClinicalClinical Features I

- Cell deficiency Causes the Sx
 - RBC pallor, fatigue, dyspnea
 - Thrombocytopenia petechiae, hematoma, bleeding
 - Neutropenia sepsis, cellulitis, pneumonia
- Hyperleukocytosis
 - Blasts > 100,000 obstruction to capillaries and small arteries

Problematic, i.e. in lungs

- Leukemia cutis
 Most common site of infiltration is skin
 - 10-20% of leukemias
- CNS leptomeningeal
 involvement 2nd most common
 - headache, mental status meningitis
 - cranial nerves

Acute Myelogenous Leukemia: ClinicalClinical Features II

- Tumor lysis syndrome
 - Contents of cells
 - K+
- Not uncommon to cause [K+] of 7.5 which is lethal
- PO⁴
- uric acid

Acute Myelogenous Leukemia: ClinicalClinical Features III

about it.

will use up the O2/glucose.

So if you get a lab reading of O2 = 20 and glucose = 10 and the patient is still talking, don't worry

Leukocytosis In the test tube, all those cells •

- low pO(2)
- low glucose
- high potassium

Acute Myelogenous Leukemia: Treatment

Overview Has stayed the same for 30 years

- Induction
 - 3 days of anthracycline
 - 7 days cytarabine

- Consolidation/Maintenance
 - several more cycles of intensive chemotherapy highly variable

Acute Myelogenous Leukemia: Treatment Schema

CIVI = continuous intravenous BM = bone marrow biopsy Blasts = leukemic cells

Mayer (CALGB) N Engl J Med 331:904, 1994

Acute Myelogenous Leukemia: Treatment Overall Survival and Disease Free Survival

Moore, J. O. et al. Blood 2005;105:3420-3427
Acute Myelogenous Leukemia Summary

- Cells do not mature and do not die
- Older individual (can be young)
- Fatigue most common presentation
- Normal physicial exam Usually, but not always
- Pancytopenia Usually, but not always
- Aggressive chemotherapy
- 30% survival