Cardiac Radiography

Jared D. Christensen, M.D. **Duke** Radiology

RADIG-RAPHY

Jared D. Christensen, M.D. Duke Radiology

Overview

Basic Concepts

- Technique
- Normal anatomy

Technique

3 Standard Views

Posterior-Anterior (PA)

Anterior-Posterior (AP)

Lateral

Magnification

R

	PORTABLE
pa erect 6	
	721
	1000000
	1 1 and the
	Carden Contraction
	1 Martin Barris
	NIC
DA	
ГA	

Cardiac Anatomy

Cardiac Anatomy

- R brachiocephalic v./ SVC 1.
- Ascending Aorta 2.
- R atrium 3.
- IVC 4.
- 5. L brachiocephalic v./ L subclavian a.
- 6. Aortic arch
- Main pulmonary a. 7.
- L atrial appendage 8.
- L ventricle 9.

23-year old male with acute chest pain

Where is the abnormality?

D. It's normal

Where is the abnormality?

D. It's normal

Where is the abnormality?

D. It's normal

What is the most likely diagnosis?

A. Mediastinal mass **B.** Aortic dissection C. Pulmonary embolism D. Lymphadenopathy

Aortic Dissection - Marfan Syndrome

Chambers

Cardiac Chambers

1. L Atrium 2. R Atrium 3. L Ventricle 4. R Ventricle

Heart Size

Cardiac Index:

Heart Size

Cardiac Index:

Normal: $\leq 50\%$

Heart Size

Volume Dilation

ΙΟΠ

Left Ventricle

- Enlarged left heart border
- Apex moves down and leftward

Left Ventricle

- Enlarged left heart border
- Apex moves down and leftward

Left Ventricle

- Enlarged left heart border
- Apex moves down and leftward

Right Atrium

- Divide hemithorax into thirds
- Right heart border is $> \frac{1}{3}$

Right Atrium

- Divide hemithorax into thirds
- Right heart border is $> \frac{1}{3}$

Right Atrium

- Divide hemithorax into thirds
- Right heart border is $> \frac{1}{3}$

Right Ventricle

 Elevated cardiac apex
 "Boot-shaped" heart

Right Ventricle

Elevated cardiac apex
"Boot-shaped" heart

Right Ventricle

 Elevated cardiac apex
 "Boot-shaped" heart

Tricuspid
Mitral
Aortic
Pulmonic

Which valve is calcified?

Which valve is calcified?

A. Aortic
B. Pulmonic
C. Mitral
D. Tricuspid

Heart Size

Volume Dilation

ΙΟΠ

Valve Disease

Normal Stenosis directional flow Valve doesn't fully open

Reversed Insufficiency directional flow Valve doesn't fully close

Mitral Insufficiency

 Left atrium dilates Left ventricle dilates (over time) Normal pulmonary vasculature

Mitral Insufficiency - Acute MI

Mitral Stenosis

Left atrial hypertrophy/dilation

 Dilated pulmonary veins, then arteries

Dilated right ventricle

Aortic Insufficiency

 Left ventricle dilates Aorta may eventually dilate due to increased LV volumes

Aortic Stenosis

Left ventricle hypertrophy/dilation Post-stenotic dilation of ascending aorta Pulmonary vessels are norma

Aortic Stenosis (& Insufficiency)

Pulmonic Stenosis

- Right ventricle hypertrophy/dilation
- Post-stenotic dilation of pulmonary artery

Pericardium

Pericardium

Anatomy:
Visceral
Space
Parietal

Vasculature

Vasculature

Thoracic Aorta
Pulmonary Arteries
Pulmonary Veins

pa

Kerley B Lines

A. AVR
B. Cardiac Txp
C. CABG
D. Lung Txp

A. AVR
B. Cardiac Txp
C. CABG
D. Lung Txp

A. AVR
B. Cardiac Txp
C. CABG
D. Lung Txp

Which tube/line is malpositioned?

B

Which tube/line is malpositioned?

Which tube/line is malpositioned?

52-year-old male with chest pain and dyspnea.

52-year-old male with chest pain and dyspnea.

A. Left atrium B. Left ventricle C. Right atrium D. Right ventricle

A. Left atrium B. Left ventricle C. Right atrium D. Right ventricle

Left Ventricle Aneurysm

54-year old male with chest pain and dyspnea

A. Biopsy
B. PET-CT
C. CTA
D. Surgical resection

A. Biopsy
B. PET-CT
C. CTA
D. Surgical resection

A. Biopsy
B. PET-CT
C. CTA
D. Surgical resection

Aortic Arch Pseudoaneurysm

Conclusions

Conclusions

Learn what is normal

Be systematic in your interpretation

Contours, Chambers, Valves

Physiology predicts pathology

Jared D. Christensen, M.D. Duke Radiology

I A RDIAL RADIOG-RAPHY

Jared D. Christensen, M.D. 🛄 Duke Radiology

